
Comparative analysis of urban traffic control

algorithms

Robert, Varga - Technical University of Cluj Napoca,
supervisor Mihai, Hulea

Abstract-The current paper proposes to analyze different con-

trol algorithms for optimizing urban traffic control. The aim of

the applied algorithms is to minimize queue length. Firstly fixed

phase times are allocated, secondly phase times are dynamically

changed, thirdly a dynamic algorithm with “interrupts” is used

and lastly a centralized fixed time strategy using genetic

algorithms is implemented. These are compared using test results

from simulation.

I. INTRODUCTION

Automatic traffic control is employed in almost all big cities

in these days. The first systems of this type were implemented

in the ‘60s. In 1987 the United States and Canada had 300

functional systems which controlled 20000 traffic lights [1].

The goal of using such systems is to optimize traffic flow in

big cities. Using specific strategies overall traffic delays can be

reduced by up to 10-40%. Cases of traffic congestions (jams)

can also be reduced. These, if not handled, produce the degra-

dation of the traffic system infrastructure, cause significant

delays and are a source of pollution.

Using automated control systems that command traffic lights

is a solution to these problems that is also efficient from the

perspective of financial investment. Statistics show that instal-

lation and maintenance costs are returned in the first year of

functioning.[2]

II. PROBLEM STATEMENT

Given a system of 4 intersections placed in the manner pre-

sented in figure 1 it is required to minimize the queue length

for any given input for the system. Input is given by specifying

the flow in vehicles/minute for every 8 input bands. Input flow

is randomly chosen from the interval:

() ()1 , 1 , 1,8
i ii given given

X X d X d i ∈ − + ∈ (1)

where d represents the deviance (in percents) and X is the

input vector containing entries for input flows of system inputs

in counter-clockwise order.

Figure 1. System of controlled intersections

The algorithms used for solving the optimization problem

have knowledge of the queue length at any given moment for

any band at any intersection.

An auto vehicle if it is granted permission to pass may

choose randomly with a certain probability (by default 30%) to

turn right or to head straight ahead (remaining 70%). This sim-

plification enables phase time allocation algorithms that used

two phases. Phases allow traffic flow from opposing bands

simultaneously. Every street has a single band.

III. STATE OF THE ART

One of the most often utilized strategies today is TRANSYT,

developed by Robertson. It models the traffic system using

nodes that represent intersection and arcs that correspond to

roads. Based on input data the algorithm does a heuristic “hill-

climbing” based on a performance indicator to find the (local)

minim/maxim.[3]

A coordinated dynamic strategy that uses a mathematical

model that is similar to the one treated in this paper is called

the “Store-and-Forward” method. The system is decomposed in

traffic cells which are described in a linear state-space:

() () () ()1x k x k B g k D d k+ = + ∆ + ∆ (2)

in which x maintains the number of vehicles in the cell, B

and D are matrices with constant elements, g – green time vec-

tor, d – perturbation vector [1].

The use of genetic algorithms for solving time allocation

problems has been treated in other papers. Reference [4] deals

with dynamic intersection signal control optimization (DISCO)

for a system of intersection from Hong Kong. Three strategies

are tested: fixed cycle time and fixed phases; fixed cycle time,

variable phases; no cycle, variable phase lengths. Superior re-

sults are obtained in comparison with the system in use even in

case of the weakest algorithm that uses fixed phase times.

IV. ALGORITHMS USED

The mathematical model used for traffic cells can be de-

scribed by the following equation in discrete time steps k:

() () () () ()1i i i ij
x k x k in k out k out kτ+ = + + − −∑ (3)

where x is a traffic cell whose state represents the number of

vehicles in the cell; in(k) is the input flow function that has the

value 1 with probability
() 1

4 60iX k ⋅ ⋅ .This produces on aver-

age Xi vehicle arrivals over 240 time steps equivalent to one

minute; out(k) is the output function that has the value 1 if traf-

fic flow is enabled and 0 otherwise. The summation represents

vehicles arriving from other intersection after τ time steps.

The probabilistic input function enables the simulation of

random arrival events.

1. Static (offline)

Using the input flows supplied for the system the controllers

placed at intersections allocate static phase times calculated

using the following relations:

0

1

0 1

0 1

(2 1)*

(2)*

; ; 1, 4

i

i

i i i

i i
i i

i i

S mask i X

S mask i X

S S S

S S
t C t C i

S S

= −

=

= +

′= = ∈
 (4)

 Phase t1 signifies traffic flow enabled on horizontal streets

at intersection 1, t’1 represents vertical flow enabled, C is cycle

time.

 The operator “*” signifies multiplication of elements at the

same position and a summation of the resultant elements. The

mask provides the weights of the inputs that contribute to phase

time length and is based on the car flux that passes the intersec-

tion in the direction opened during the respective phase. For

instance car flow in horizontal direction at intersection 1 is

given by input flow X2 + (1-p)X7 + pX8 – the latter part is due

to those who chose at intersection 4 to travel to intersection 1

(see Table I, row 1).

 Table I contains 8 values per row for every input grouped

in pairs separated by commas in each cell for the phases indi-

cated in the first column.

TABLE I

MASK VALUES

Phase values

t1 0,1 0,0 0,0 1-p,p

t’1 1,0 0,1-p 0,(1-p)p 0,(1-p)p2

t2 0,(1-p)p2 1,0 0,0 0,(1-p)p

t’2 1-p,p 0,1 0,0 0,0

t3 0,0 1-p,p 0,1 0,0

t’3 0,(1-p)p 0,(1-p)p2 1,0 0,1-p

t4 0,1-p 0,(1-p)p 0,(1-p)p2 1,0

t’4 0,0 0,0 1-p,p 0,1

Offset values are fixed to 2 seconds (equal to the travel time

between neighboring intersections, to produce a “green wave”)

for intersections 2 and 4; and set to 4 seconds for intersection

3. Intersection 1 is considered to be reference (offset 0).

2. Dynamic – (online)

 Cycle time is fixed and specified from the beginning. Phase

times are reallocated at every cycle start in function of the

queue length at moment of decision from the current inter-

section. The decision is made locally without knowledge of

neighboring queue length values.

 Relations used are as follows:

; ; , 1, 4i i
i i

i i i i

H V
t C t C i

H V H V
′= = ∈

+ + (5)

where Hi – sum of all queue lengths for auto vehicles wait-

ing on horizontal streets at the moment of calculation (new

cycle start); Vi – the same for vertical streets; C – fixed

cycle time.

 This enables phase time allocation that is independent of

other intersections. For steady input flows phase time lengths

tend to stabilize thus giving an approximate static allocation.

 The same offset configuration is used as in the previous al-

gorithm.

3. Dynamic – with interrupts

No fixed cycle time is used. Specific conditions are checked

periodically (250 milliseconds). If these are met an “interrupt”

occurs, meaning that the current phase ends. There are imposed

minimal and maximal phase lengths in order to prevent dead-

lock and/or starvation. This algorithm uses information from

neighboring intersections – is collaborative.

 Figure 2 depicts a single intersection to explain the condi-

tions. In this figure, notations and the conditions are dependent

on intersection number (nr) and so they can be rotated to pro-

duce conditions for all 4 intersections.

input

“next”

input

“prev”

input

“nr”

input

“other”

Bnext

Bprev

Figure 2. Input bands and auto vehicles waiting at neighboring

intersections

The logical conditions checked for this specific configura-

tion are (& - logic and, | - logic or):

• to interrupt vertical flow:

Bnext > limit & Bnext > cars[next] |

cars[prev] > limit & cars[prev]>cars[next] |

cars[nr] > limit & cars[nr] > cars[next]

 & cars[next] < limit & Bprev < limit

• to interrupt horizontal flow:

Bprev > limit & Bprev > cars[prev] |

cars[next] > limit & cars[next]>cars[prev] |

cars[other] > limit & cars[other] > cars[prev]

 & cars[prev] < limit & Bnext < limit

where cars[“x”] represents the queue length at entrance “x”

at the moment of evaluation (dynamically updated).

 The algorithm prevents the accumulation of auto vehicles

past a fixed number limit (the value for this has to be smaller

than the maximum number of auto vehicles permitted to wait in

order to permit decisions to be taken in time).

 No offset strategy is used because in this case the cycle

time is variable.

4. Genetic

 Cycle time and phase time is allocated once (fixed cycle and

phase time) and are calculated centrally. A population size of

1000 is used and a high mutation rate of 90%. Chromosome

structure is presented in the following table (Table II).

TABLE II

CHROMOSOME GENE STRUCTURE

 Offsets are set to values retrieved from chromosomes in

modulo of the cycle time. Note: Intersection 1 is considered to

be the reference for offsets (has offset 0).

mod , 1,4
ii chroffset offset C i= ∈

 (6)

 Phase times are recalculated to fall between minimum and

maximum values. Phase 2 length for every intersection is simp-

ly the difference between the cycle time and phase one.

max min
min ; , 1, 4

127 ii chr i i

t t
t t t t C t i

−
′= + = − ∈

 (7)

 Fitness function calculation entails a simulation of 1000

seconds length. When manipulating vehicle numbers instead of

incrementing/decrementing with a certain probability a rational

number is added/subtracted that is proportional to the proba-

bility. The maximum queue length is retained (bmax) and the

fitness becomes:

max

300
if

b
=

 (8)

for all chromosomes in the population.

 Simulation is interrupted if queue length exceeds a given a

limit (100 chosen) to save calculation time.

 To enhance the convergence of the algorithm search plane

smoothing is applied. New fitness values will be (applied to all

the population):

()
()

,

,

i i

i

i i

f f f if f f
f

f f f if f f

α

α

 + − >′=
 − − < (9)

 Starting value for α is 5 and it is decremented with 0.5 on

every iteration until it becomes 1. [5]

The figure from attachment 2 shows the evolution of maxi-

mum fitness values from the whole population using different

kinds of genetic algorithms. Classical genetic algorithm uses

roulette-wheel type selection and doesn’t have search-space

smoothing. It can be seen that by using smoothing a better re-

sult is obtained. By choosing a tournament type selection -

grouping chromosomes in pairs - assures a steady increase of

fitness values (see attachment 1) but for harder problems fails

to reach near-optimal solution.

Bits Value represented

0-6 Cycle time (0-127 in seconds)

7-13 Phase 1 length intersection 1

14-20 Offset for intersection 2

21-27 Phase 1 length intersection 2

28-34 Offset for intersection 3

35-41 Phase 1 length intersection 3

42-48 Offset for intersection 4

49-55 Phase 1 length intersection 4

V. APPLICATION ARCHITECTURE

 Simulation is realized using an application developed using

Java language that incorporates both the system of controllers

and the simulator with a rudimentary view of the current sy

tem state.

The classes implementing the simulator are grouped in a si

gle packet so it can be used with different packets that contain

code for the controllers and the algorithms used. Note: Diffe

ent algorithms imply different controller structure because of

different phase time allocation strategies.

 Controller class implements all controller code, controllers

responsible for different intersections are recognized by their

assigned number which is identical to intersection number.

Calculations and algorithms are a function of this number

enabling high code reusability.

 Values, constants, probabilities, input values etc. are stored

in the class Data and are accessible from every class. Classes

refer to these values so changing system behavior is simple

can be done by changing only the value from the D

 Communication is peer-to-peer, it is realized using

el programming on sockets. The queue length at every moment

is sent as a packet to the simulator and to neighboring contro

lers (if it is the case).

An overview of system architecture may be seen in Figure 3:

Figure 3. System architecture overview

VI. TEST RESULTS

Testing was realized using an application developed based

on the system architecture presented before. The application

generates text files with data that is submitted t

the simulation is done.

Three input configurations were selected to show differences

between algorithms (see Table 3). Simulation time was 1

nutes. For the purpose of shrinking simulation time all time

constants are approximately 3-4 times smaller than in actual

real life situation. The application permits simulation at a slo

er clock rate which will produce a realistic pace.

Algorithms are compared using 3 parameters, namely:

• average queue length – average number of cars wai

ing

• maximum queue length – global maximum for all i

tersections

RCHITECTURE

Simulation is realized using an application developed using

Java language that incorporates both the system of controllers

and the simulator with a rudimentary view of the current sys-

grouped in a sin-

gle packet so it can be used with different packets that contain

code for the controllers and the algorithms used. Note: Differ-

ent algorithms imply different controller structure because of

troller class implements all controller code, controllers

responsible for different intersections are recognized by their

assigned number which is identical to intersection number.

Calculations and algorithms are a function of this number

Values, constants, probabilities, input values etc. are stored

in the class Data and are accessible from every class. Classes

refer to these values so changing system behavior is simple and

can be done by changing only the value from the Data class.

peer, it is realized using low lev-

sockets. The queue length at every moment

is sent as a packet to the simulator and to neighboring control-

e may be seen in Figure 3:

System architecture overview

Testing was realized using an application developed based

on the system architecture presented before. The application

generates text files with data that is submitted to analysis after

input configurations were selected to show differences

. Simulation time was 10 mi-

For the purpose of shrinking simulation time all time

mes smaller than in actual

real life situation. The application permits simulation at a slow-

pace.

Algorithms are compared using 3 parameters, namely:

average number of cars wait-

global maximum for all in-

• travel time – approximate average time to travel

through the network by choosing a random route

Figures 4, 5 and 6 show the results obtained for these three

parameters after simulation for algorithms 1, 2, 3 and 4 (x

axis).

Figure 4. Results for input configuration one

Figure 5. Results for input configuration two

Figure 6. Results for input configuration three

Average travel time is estimated by taking an average over

vehicle departure and arrival time moments and then subtrac

ing the obtained values.

approximate average time to travel

through the network by choosing a random route

show the results obtained for these three

for algorithms 1, 2, 3 and 4 (x-

nput configuration one

nput configuration two

nput configuration three

Average travel time is estimated by taking an average over

departure and arrival time moments and then subtract-

In Table III every column contains the input flux for the in-

puts as presented in Figure 1. The rows represent the three dif-

ferent configurations tested. The total system input increases

from 370 to 540 and to 640.
TABLE III

INPUT VALUES IN VEHICLES/MINUTES

 X1 X2 X3 X4 X5 X6 X7 X8

1 70 20 50 50 20 70 70 20

2 70 50 50 70 100 50 100 50

3 100 70 70 70 70 100 70 70

Following tables (Table IV, V and VI) present phase time 1

(T1), phase time 2 (T2) and offset values (O) where appropri-

ate in seconds. Each row corresponds to an algorithm: 1-

Static; 2-Dyanmic; 3-With interrupts; 4-Genetic. (Note: real

values are 3-4 times larger)

TABLE IV

PHASE TIMES AND OFFSET VALUES FOR INPUT

CONFIGURATION NUMBER ONE

 C1 C2 C3 C4

Alg: T1 T2 T1 T2 O T1 T2 O T1 T2 O

1 7.5 12.5 10 10 2 15 5 4 12.5 7.5 2

2 6.5 13.5 10.5 9.5 2 14.5 5.5 4 12.5 6.5 2

3 13 11 14.5 12.5 - 16 16.5 - 13.5 12.5 -

4 11 19 16 14 23 20 10 15 19 11 10

TABLE V

 PHASE TIMES AND OFFSET VALUES FOR INPUT

CONFIGURATION NUMBER TWO

 C1 C2 C3 C4

Alg: T1 T2 T1 T2 O T1 T2 O T1 T2 O

1 10 10 8.5 11.5 2 8.5 11.5 4 10 10 2

2 10 10 8.5 11.5 2 7.5 12.5 4 10 10 2

3 10 9 8 11 - 17 12 - 18 13 -

4 12 18 14 16 23 11 19 19 19 11 4

TABLE VI
 PHASE TIMES AND OFFSET VALUES FOR INPUT

CONFIGURATION NUMBER THREE

 C1 C2 C3 C4

Alg: T1 T2 T1 T2 O T1 T2 O T1 T2 O

1 - - - - - - - - - - -

2 11.5 8.5 10 10 2 10.5 9.5 4 9.5 10.5 2

3 12 16 14 14 - 16 13 - 13 15 -

4 11 19 15 15 1 17 13 2 13 17 2

For algorithms 1 and 2 a fixed cycle of 20 seconds is used.

Phase values for algorithms that produce variable phase times

(2 and 3) are average values taken over the whole simulation.

As mentioned before, algorithm 3 uses no offset because of the

variable cycle time.

Test results are different on every simulation. This is so be-

cause input flow is allowed to change inside an interval and

vehicle arrival is random (vehicles may arrive or not at every

250 milliseconds).

VII. CONCLUSIONS

After studying figures 4-6 it follows that the static algorithm

is not efficient when used for input configuration 3 and it is the

least efficient in the cases when the system is more loaded.

Dynamic algorithms prove to be the best as they keep maxi-

mum queue lengths at a low value. Algorithm 3 results show

the minimal queue length values for cases 2 and 3.

Genetic algorithm generates a solution even for the most dif-

ficult case. In comparison with the first algorithm it creates

better solutions for a more loaded system (input configuration

2 and 3).

Algorithm 1 is the simplest to implement because controllers

need to be programmed to fixed phase times. It is the best solu-

tion for simple networks with under-saturated traffic.

Algorithm 2 needs sensors for detecting the number of ve-

hicles waiting. Also the controllers need to allocate phase times

at every cycle. It works for loaded networks because it uses

recent data obtained from the sensors.

Algorithm 3 also needs sensors and in addition controllers

need to exchange information between each other so a network

connection is also necessary. It is the most secure because it

checks neighboring intersections to prevent congestion.

Algorithm 4 can be used when the aim is to use fixed phase

times that are optimal for a certain network and if coordinated

work is imposed.

VII. FUTURE WORK

System architecture permits adding other modules to it

which implement other algorithms. Research may continue on

improving genetic algorithm results when tournament type

selection is used. This has the advantage of a steady fitness

function value growth but in the current form does not con-

verge to near-optimal solutions.

REFERENCES

[1] Markos Papageorgiou, “Review of Road Traffic Control Strategies”,

2003

[2] Edward Lieberman, Ajay K. Rathi, “Traffic Simulation”

[3] Dennis I. Robertson, R. David Bretherton, “Optimizing Networks of

Traffic Signals in Real Time – The SCOOT Method”
[4] Hong K. Lo, M. ASCE, Andy H. F. Chow, “Control Strategies for Over-

saturated Traffic”, 2004

[5] C. I. Karr, E. J. Gentry, “Fuzzy Control of a pH Reactor Using Genetic
Algorithms”, IEEE Trans., 1993

Attachment 1 (average fitness by generation number):

Attachment 2 (maximum fitness by generation number):

